Module functions.matrixmixer.significances
Functions
def alpha_two_to_one_tailed(alpha: float)
-
corrects alpha level for a one sided t-test by halfing it
Args
alpha
:float
- two-tailed alpha level
Returns
float
- one-tailed alpha level
def bonferroni_correction(n: int, alpha: float)
-
Perform Bonferroni correction on p-values.
Parameters: n (int): number of tests performed alpha (float): Desired family-wise error rate.
Returns: corrected_alpha (float): Corrected significance level after Bonferroni correction.
def find_nominal_significances(table: dict, break_object: dict, code: int, break_value_labels: dict, alpha: float)
-
finds all significanes of a nominal variable, sets all variables for the dictionaries objects
Args
table
:dict
- table object to add significances to
break_object
:dict
- break object to add significances to
code
:int
- code of the answer
break_value_labels
:dict
- value labels of the break
alpha
:float
, optional- significance level. Defaults to 0.05.
def find_ordinal_significances(table: dict, break_object: dict, break_value_labels: dict, alpha: float)
-
finds all significanes of a ordinal or scale variable, sets all variables for the dictionaries objects
Args
table
:dict
- table object to add significances to
break_object
:dict
- break object to add significances to
break_value_labels
:dict
- value labels of the break
alpha
:float
, optional- significance level. Defaults to 0.05.
def manual_ttest_ind(arr1:
, arr2: ) ‑> Tuple[float, float] -
performs manual t-test statistic calculation for two arrays of data
Args
arr1
:np.array
- array of sample 1
arr2
:np.array
- array of sample 2
Returns
tuple(t_stat, p_value): returns the t-statistic as well as the p-value
def manual_ztest_prop(p1: float, n1: float, p2: float, n2: float) ‑> Tuple[float, float]
-
performs manual z-test statistic calculation for two samples
Args
p1
:float
- proportion sample 1
n1
:float
- size sample 1
p2
:float
- proportion sample 2
n2
:float
- size sample 2
Returns
tuple(z_stat, p_value): returns the z-statistic as well as the p-value